Classical Expansions and Their Relation to Conjugate Harmonic Functions
نویسنده
چکیده
منابع مشابه
Nonharmonic Gabor Expansions
We consider Gabor systems generated by a Gaussian function and prove certain classical results of Paley and Wiener on nonharmonic Fourier series of complex exponentials for the Gabor expansion. In particular, we prove a version of Plancherel-Po ́lya theorem for entire functions with finite order of growth and use the Hadamard factorization theorem to study regularity, exactness and deficienc...
متن کاملFast Algorithms for Spherical Harmonic Expansions
An algorithm is introduced for the rapid evaluation at appropriately chosen nodes on the two-dimensional sphere S2 in R3 of functions specified by their spherical harmonic expansions (known as the inverse spherical harmonic transform), and for the evaluation of the coefficients in spherical harmonic expansions of functions specified by their values at appropriately chosen points on S2 (known as...
متن کاملZagier-type dualities and lifting maps for harmonic Maass–Jacobi forms
The real-analytic Jacobi forms of Zwegers’ PhD thesis play an important role in the study of mock theta functions and related topics, but have not been part of a rigorous theory yet. In this paper, we introduce harmonic Maass–Jacobi forms, which include the classical Jacobi forms as well as Zwegers’ functions as examples. Maass–Jacobi–Poincaré series also provide prime examples. We compute thei...
متن کاملZETA SERIES GENERATING FUNCTION TRANSFORMATIONS RELATED TO POLYLOGARITHM FUNCTIONS AND THE k-ORDER HARMONIC NUMBERS
We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010